User Manual
Software
Landslide Tool V1.0.0

AUTHOR (S): Alvaro Ivan Hurtado Ch.
PUBLICATION DATE: 26/03/2018
VERSION: 1.0.0
Copyright

Copyright © 2018 UNIVERSIDAD DE LOS ANDES

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

https://opensource.org/licenses/MIT

Universidad de los Andes – CAPRA PLATFORM
Carrera 1 Este No. 19A-40, Edificio Mario Laserna, Piso 6 / Bogotá, Colombia - Tel: (57-1) 3324312/14/15.
Contact us: ecapra@uniandes.edu.co
Contents

1. Introduction 1
 1.1. Problem description 2
 1.2. Theoretical framework 2
 1.3. Objectives 3

2. Tool installation 4
 2.1. Minimum installation requirements 5
 2.1.1. Minimum hardware requirements 5
 2.1.2. Software requirements 5
 2.2. Installation process 5

3. Graphical user interface 6
 3.1. General description 7
 3.2. Input parameters setting and data type 7
 3.3. Output parameter 8

4. Step-by-step tutorial 9
 4.1. Tutorial 10
Chapter 1

Introduction
1.1. Problem description

The CAPRA Landslide Tool is a tool developed to be used in the open free source QGIS software. This tool allows the user to obtain the safety factor against landslide considering external hazards for a terrain. The Landslide tool uses the infinite slope theory to obtain the factor of safety against landslide given the soil parameters in terms of effective stresses, the rain hazard in terms of multi-year average monthly rainfall and seismic hazard in terms of peak ground acceleration.

![Infinite slope typical cross section](image)

Figure 1 Infinite slope typical cross section

1.2. Theoretical framework

This tool uses the infinity slope theory to obtain the factor of safety against landslide based on a few parameters. The Eq. [1] presents the basic formula used to obtain the factor of safety against landslide based on minimum parameters.

\[
SF = \frac{c' \tan \phi' \left(1 - \frac{\gamma_w \cdot h_w}{\gamma_{sat}}\right) - A_a \cdot \tan \phi' \cdot \tan \beta}{A_a + \tan \beta}
\]

Eq. [1]

where:

- \(SF\) := Factor of safety against landslide.
- \(c'\) := effective cohesion of soil layer.
- \(\phi'\) := effective soil angle of internal friction layer.
- \(\gamma_{sat}\) := saturated unit weight of soil layer.
- \(z\) := depth of the soil layer to the potential failure surface.
- \(h_w\) := Intensity for the known MDR.
- \(\gamma_w\) := unit weight of water, 9.81 kN/m².
- \(A_a\) := Peak ground acceleration.
- \(\beta\) := terrain slope.
\[h_w = \frac{RFI - LLR}{ULR - LLR} \]

\(RFI \) := multi-year average monthly rainfall intensity.

\(LLR \) := lower limit of multi-year average monthly rainfall intensity to neglect water in the soil layer.

\(ULR \) := upper limit of multi-year average monthly rainfall intensity to consider completed saturated the soil layer.

1.3. Objectives

The principal objective of this tool is to obtain the factor of safety against landslide for a specific condition of rainfall and seismic hazard using the infinite slope methodology approach.
Chapter 2

Tool installation
2.1. Minimum installation requirements

The hardware and software requirements for the installation of this tool are specified in the following sections.

2.1.1. Minimum hardware requirements

The following are the minimum hardware requirements:

2.1.1.1 Processor and OS
- PC or compatible computer with Pentium III processor (or higher) and processor speed over 1.5 GHz.
- Operating systems: Microsoft XP or Higher.

2.1.1.2 RAM Memory
- Free hard drive capacity of 250 Mb or Higher.
- 512 Mb Extended Memory (RAM).

2.1.2. Software requirements

The following are the minimum software requirements:

- If the computer where this software is going to be installed does not have installed QGIS, please install the QGIS software. It can download from: https://qgis.org/en/site/forusers/download.html.

2.2. Installation process

The following steps must be followed for the installation of the tool:

1. Verify that all software requirements are meet before installation. Please see section 2.1.2.
2. Open QGIS software, then, go to the Add model from file in the Processing Toolbox/Models.
3. Choose the file “CAPRA_LANDSLIDE_TOOL.qgs” from the popup menu.
4. Once the installation has been completed successfully, you can visualize the tool in the Models.

If you cannot install this tool or get any error message during the installation process or when the program starts, please send an email with the description to ecapra@uniandes.edu.co.
Chapter 3

Graphical user interface
3.1. General description

This software allows the user to obtain the factor of safety against landslide for a terrain. The methodology used is presented in section 1.2.

![Graphical user interface](image)

3.2. Input parameters setting and data type

The following table specify the input setting and data type for all parameters used by the tool. Also, some recommended values are included. All raster file shall be in projected coordinates and must have the same coordinate system.

<table>
<thead>
<tr>
<th>Item</th>
<th>Parameter</th>
<th>Format type</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SOIL LAYER DATA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>CS_MAP</td>
<td>Raster file</td>
<td>-</td>
<td>kN/m²</td>
</tr>
<tr>
<td>1.2</td>
<td>GSATS_MAP</td>
<td>Raster file</td>
<td>-</td>
<td>kN/m²</td>
</tr>
</tbody>
</table>
Output parameter

The following table specify the output file and data type for all parameters used by the tool.

Table 2 Output parameters

<table>
<thead>
<tr>
<th>Item</th>
<th>Parameter</th>
<th>Format type</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TERRAIN MODEL</td>
<td>Raster file</td>
<td>-</td>
<td>degrees</td>
</tr>
<tr>
<td>1.1</td>
<td>SLOPE</td>
<td>Raster file</td>
<td>-</td>
<td>degrees</td>
</tr>
<tr>
<td>2</td>
<td>FACTOR OF SAFETY</td>
<td>Raster file</td>
<td>0 to 12</td>
<td>-</td>
</tr>
<tr>
<td>2.1</td>
<td>SF_IS</td>
<td>Raster file</td>
<td>-</td>
<td>g/g</td>
</tr>
</tbody>
</table>
Chapter 4

Step-by-step tutorial
4.1. Tutorial

This tutorial shows you how to use the tool. The step you must follow are the followings:

1. Open the QGIS software. Wait until the program is loaded completely.
2. Load the input raster files from the Example Folder to QGIS. Please verify that all the files are loaded (see the figure below).

3. Go to Processing Toolbox/Models/CAPRA-Suite/Landslide-Tool and click on it. It will appear a new window (see figure below).
4. First you must be read the **Help Tab** to get information about the format for the input raster files. Then assign the raster files as follows:

<table>
<thead>
<tr>
<th>Input field</th>
<th>Raster File</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP_MAP</td>
<td>RAIN_PP</td>
</tr>
<tr>
<td>PGA_MAP</td>
<td>PGA</td>
</tr>
<tr>
<td>CS_MAP</td>
<td>COHE_S</td>
</tr>
<tr>
<td>GSATS_MAP</td>
<td>GAMMA_S</td>
</tr>
<tr>
<td>PHIS_MAP</td>
<td>PHI_S</td>
</tr>
<tr>
<td>ZDEPTH_MAP</td>
<td>Z_LVL</td>
</tr>
<tr>
<td>DEM_MAP</td>
<td>DEM_DATA</td>
</tr>
</tbody>
</table>

5. After you finish to assign the raster files. Fill the next field as follows:

<table>
<thead>
<tr>
<th>Input field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBSLOPE</td>
<td>5</td>
</tr>
<tr>
<td>LB_PREC</td>
<td>100</td>
</tr>
<tr>
<td>UB_PREC</td>
<td>350</td>
</tr>
</tbody>
</table>

6. Then finally assign a name to the output raster as follows:

<table>
<thead>
<tr>
<th>Input field</th>
<th>Raster File Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SF_IS</td>
<td>SF_TEST</td>
</tr>
<tr>
<td>SLOPE</td>
<td>SLOPE</td>
</tr>
</tbody>
</table>

7. After you have finished to set up all the required information, then click on **Run button**. Once the tool has finished the calculation you will get the following figure. You can also edit to add the data

8. Close the program.