

COSTA RICA

Tomo II Análisis Probabilista de Amenazas y Riesgos Naturales

INFORME TÉCNICO ERN-CAPRA-T2-12 AMENAZA POR DESLIZAMIENTOS EN EL DISTRITO DE OROSÍ

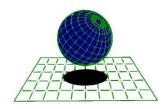
Evaluación de Riesgos Naturales - América Latina -

Consultores en Riesgos y Desastres

Consorcio conformado por:

Colombia

Carrera 19A # 84-14 Of 504 Edificio Torrenova Tel. 57-1-691-6113 Fax 57-1-691-6102 Bogotá, D.C.



España

Centro Internacional de Métodos Numéricos en Ingeniería - CIMNE Campus Nord UPC Tel. 34-93-401-64-96 Fax 34-93-401-10-48 Barcelona

Vito Alessio Robles No. 179 Col. Hacienda de Guadalupe Chimalistac C.P.01050 Delegación Álvaro Obregón Tel. 55-5-616-8161 Fax 55-5-616-8162 México, D.F.

ERN Ingenieros Consultores, S. C.

ENN Evaluación de Riesgos Naturales - América Latina www.ern-la.com

Omar Darío Cardona A.

Dirección General del Proyecto

Luis Eduardo Yamín L. Dirección Técnica ERN (COL)

Gabriel Andrés Bernal G. Coordinación General ERN (COL) Mario Gustavo Ordaz S. Dirección Técnica ERN (MEX)

irection rechica ERN (IVIEA)

Eduardo Reinoso A. Coordinación General ERN (MEX) Alex Horia Barbat B.

Dirección Técnica CIMNE (ESP)

Martha Liliana Carreño T. Coordinación General CIMNE (ESP)

Especialistas y Asesores – Grupos de Trabajo

Miguel Genaro Mora C.

Especialista ERN (COL)

César Augusto Velásquez V. Especialista ERN (COL)

> Karina Santamaría D. Especialista ERN (COL)

Mauricio Cardona O. Asistente Técnico ERN (COL)

Andrés Mauricio Torres C.

Asistente Técnico ERN (COL)

Diana Marcela González C. Asistente Técnico ERN (COL)

Yinsury Sodel Peña V. Asistente Técnico ERN (COL)

Andrei Garzón B. Asistente Técnico ERN (COL) Carlos Eduardo Avelar F.

Especialista ERN (MEX)

Benjamín Huerta G. Especialista ERN (MEX)

Mauro Pompeyo Niño L. Especialista ERN (MEX)

Isaías Martínez A. Asistente Técnico ERN (MEX)

Edgar Osuna H. Asistente Técnico ERN (MEX)

José Juan Hernández G. Asistente Técnico ERN (MEX)

> Marco Torres Asesor Asociado (MEX)

Johoner Venicio Correa C. Asistente Técnico ERN (COL) Mabel Cristina Marulanda F.

Especialista CIMNE(ESP)

Jairo Andrés Valcarcel T. Especialista CIMNE(ESP)

Juan Pablo Londoño L. Especialista CIMNE(ESP)

René Salgueiro Especialista CIMNE(ESP)

Nieves Lantada Especialista CIMNE(ESP)

Álvaro Martín Moreno R. Asesor Asociado (COL)

Mario Díaz-Granados O. Asesor Asociado (COL)

Liliana Narvaez M. Asesor Asociado (COL)

Asesores Nacionales

Osmar E. Velasco

Guatemala

Sandra Zúñiga Nicaragua Alonso Brenes Costa Rica

Banco Mundial – Gestión de Riesgo de Desastres / Región Latinoamérica y el Caribe

Francis Ghesquiere

Coordinador Regional

Oscar A. Ishizawa Especialista Joaquín Toro Especialista

Fernando Ramírez C. Especialista Edward C. Anderson

Especialista
Stuart Gill

Especialista

Banco Interamericano de Desarrollo – Medio Ambiente / Desarrollo Rural / Desastres Naturales

Flavio Bazán

Especialista Sectorial

Cassandra T. Rogers Especialista Sectorial

Hori Tsuneki Consultor Interno

LIMITACIONES Y RESTRICCIONES

La aplicación que aquí se presenta es de carácter ilustrativo y presenta limitaciones y restricciones debido al nivel de resolución de la información disponible, de lo cual debe ser consciente el usuario final para efectos de poder dar un uso adecuado y consistente a los resultados obtenidos teniendo en cuenta el tipo de análisis realizado, el tipo y calidad de datos empleados, el nivel de resolución y precisión utilizado y la interpretación realizada. En consecuencia es importante señalar lo siguiente:

- Los modelos utilizados en los análisis tienen simplificaciones y supuestos para facilitar el cálculo que el usuario debe conocer debidamente. Éstas están descritas en detalle en los informes técnicos respectivos (ver referencias).
- Los análisis se han desarrollado con la mejor información disponible que presenta limitaciones en su confiabilidad y su grado actualización. Es posible que exista información mejor y más completa a la cual no se tuvo acceso.
- La información utilizada y los resultados de los análisis de amenaza, exposición y riesgo tienen una asociado un nivel de resolución según las unidades de análisis utilizadas, lo que se explica en el documento descriptivo del ejemplo.
- El uso que el usuario final le dé a la información no compromete a los autores de los estudios realizados, quienes presentan este ejemplo como lo que puede ser factible de hacer si se cuenta con información confiable con la precisión adecuada.
- Es responsabilidad del usuario comprender el tipo de modelo utilizado y sus limitaciones, la resolución y calidad de los datos, las limitaciones y suposiciones de los análisis y la interpretación realizada con el fin de darle a estos resultados un uso adecuado y consistente.
- Ni los desarrolladores del software, ni los promotores o financiadores del proyecto, ni los contratistas o subcontratistas que participaron en las aplicaciones o ejemplos de uso de los modelos asumen ninguna responsabilidad por la utilización que el usuario le dé a los resultados que aquí se presentan, por lo tanto están libres de responsabilidad por las pérdidas, daños, perjuicios o efectos que pueda derivarse por la utilización o interpretación de estos ejemplos demostrativos.

Tabla de contenido

1		Introducción y generalidades	1-1
2		Objetivos	2-1
3		Metodología de evaluación de la amenaza	3-1
4		Información de referencia para los análisis	4-1
4	.1	División administrativa	4-1
4	.2	Modelo de elevación digital	4-1
4	.3	Geología	4-2
4	.4	Información de suelos	4-4
5		Mapas de amenaza por deslizamiento	5-1
6		Conclusiones	6-1
7		Acciones Recomendadas	7-1
8		Referencias	8-1

Índice de figuras

FIGURA 1-1. UBICACIÓN ESPACIAL DISTRITO DE OROSÍ, COSTA RICA	. 1-1
FIGURA 1-2 DESLIZAMIENTO DEL ALTO LOAIZA EN OROSÍ. 2002	
FIGURA 1-3. DESLIZAMIENTO EN EL COSTADO DEL CAUCE DEL RÍO GRANDE DE OROSÍ	. 1-2
FIGURA 1-4, MAPA UBICACIÓN DE AMENAZAS Y RIESGO POR DESLIZAMIENTO	1-3
FIGURA 4-1 DIVISIÓN ADMINISTRATIVA DEL ÁREA DE ESTUDIO	. 4-1
FIGURA 4-2 CURVAS DE NIVEL DEL MODELO DIGITAL DE ELEVACIÓN DISPONIBLE, CON DIFERENCIAS	
ALTIMÉTRICAS DE 20 M.	. 4-2
Figura 4-3 Geología del distrito	
Figura 4-4 Mapa edafológico del distrito	4-5
FIGURA 5-1 MAPA DE AMENAZA POR DESLIZAMIENTO PARA EL DISTRITO DE OROSÍ. ESTADO DE SUELO	
SECO CON SISMO. ANÁLISIS MÉTODO MORA VAHRSON.	5-2
FIGURA 5-2 MAPA DE AMENAZA POR DESLIZAMIENTO PARA EL DISTRITO DE OROSÍ. ESTADO DE SUELO	
SECO SIN SISMO. ANÁLISIS MÉTODO DE FALLA TRASLACIONAL.	5-2
FIGURA 5-3 MAPA DE AMENAZA POR DESLIZAMIENTO PARA EL DISTRITO DE OROSÍ. ESTADO DE SUELO	
SATURADO CON SISMO. ANÁLISIS MÉTODO MORA VAHRSON.	. 5-3
FIGURA 5-4 MAPA DE AMENAZA POR DESLIZAMIENTO PARA EL DISTRITO DE OROSÍ. ESTADO DE SUELO	
SATURADO SIN SISMO. ANÁLISIS MÉTODO DE FALLA TRASLACIONAL	5-3
FIGURA 5-5 AMPLIACIÓN DE LA ZONA DE ESTUDIO CON MAYOR AMENAZA POR DESLIZAMIENTO. ESTAD	
DE SUELO SATURADO. ANÁLISIS MÉTODO FALLA TRASLACIONAL	. 5-4

Índice de tablas

TABLA 4-1. VALORES TÍPICOS DE ÁNGULOS DE FRICCIÓN PARA VARIOS TIPOS DE ROCA	4-3
TABLA 4-2 VALORES TÍPICOS DE ÁNGULOS DE FRICCIÓN PARA VARIOS TIPOS DE ROCA.	4-3
TABLA 4-3. CLASIFICACIÓN GEOMECÁNICA DE BIENIAWSKI.	4-4
TABLA 4-4. VALORES REPRESENTATIVOS PARA EL ÁNGULO DE FRICCIÓN INTERNA	4-6
TABLA 4-5. RELACIÓN DE VACIOS, CONTENIDO DE HUMEDAD Y PESO UNITARIO SECO PARA ALGUNOS	
SUELOS TÍPICOS EN ESTADO NATURAL	4-6
TABLA 4-6. DATOS GEOMECÁNICOS INFERIDOS PARA EL ANÁLISIS DE AMENAZA POR DESLIZAMIENTO	4-7
TABLA 5-1 MAPAS DE AMENAZA POR DESLIZAMIENTO GENERADOS PARA LA ZONA DE ESTUDIO	5-1

1 Introducción y generalidades

El distrito de Orosí se encuentra ubicado en la parte central del país, en la provincia de Cartago, Cantón Paraíso. Es una zona de importante sismicidad detonante de deslizamientos. La situación se agrava en los periodos invernales, donde la alta humedad y saturación de los suelos en los taludes disminuye los esfuerzos efectivos en el suelo y disminuye su capacidad resistente desencadenando situaciones críticas para la ocurrencia de deslizamientos de tierra.

Figura 1-1. Ubicación espacial distrito de Orosí, Costa Rica. (Fuente: maps.google.es)

El distrito de Orosí ha sido históricamente afectado por eventos importantes de deslizamiento y flujos de lodo. Se destacan el deslizamiento del Alto Loaiza en el 2002 (ver Figura 1-2), el cual causó la muerte de 7 personas, destruyendo 17 viviendas, e inhabilitando las redes locales de acueducto, teléfono y energía, y el deslizamiento del 25 de diciembre de 2007 en el barrio Nazareth de Orosi (ver Figura 1-3), donde diez viviendas resultaron destruidas, debido a la perdida de pie de los taludes que bordean el río Grande de Orosí, al parecer debido a la inadecuada explotación de material para construcción como arena y grava, los cual facilitó al río la socavación del costado del cauce, ocasionando el deslave y pérdida de las viviendas.

Cortes de taludes llevados a cabo en el momento de la construcción del Acueducto Metropolitano, dejan ver la pobre calidad de la roca en la zona, constituida en su mayoría por rocas sedimentarias. A estas características, se suman otros factores como son las altas pendientes, las lluvias y la alta humedad del terreno.

Figura 1-2

Deslizamiento del Alto Loaiza en Orosí. 2002.

(Fuente: www.cepis.org.pe Informe: Acueducto Orosi: una experiencia regional sobre implementación de medidas de prevención y mitigación)

Figura 1-3. Deslizamiento en el costado del cauce del río Grande de Orosí (Fuente: www.nacion.com. Costa Rica, Miércoles 9 de enero de 2008)

A raíz de las problemáticas presentadas en el distrito de Orosí en lo que se refiere a deslizamientos de laderas, se han implementado sistemas de alerta temprana en la región, y se han desarrollado estudios de susceptibilidad a deslizamientos. En la Figura 1-4 se presenta el mapa de ubicación de amenazas y riesgo por deslizamientos del distrito de Orosí, donde se enmarcan básicamente los sectores que has sido más afectados por flujos de lodos como el sector de Alto Loaiza y la comunidad de Jucó.

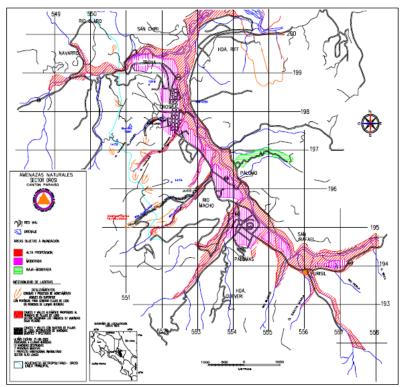


Figura 1-4. Mapa ubicación de amenazas y riesgo por deslizamiento (Fuente Análisis de vulnerabilidad a deslizamiento del distrito de Orosí, Provincia de Cartago, Costa Rica. CATIE. 2004)

2 Objetivos

El objetivo principal de la simulación realizada consiste en plantear un modelo de evaluación de la amenaza por deslizamiento en el área de estudio y evaluar de forma analítica la estabilidad de los taludes en el distrito de Orosí. El modelo debe permitir establecer las zonas de mayor amenaza por deslizamiento con el fin de comparar dicha zonificación con las zonas que realmente presentaron situaciones de inestabilidad.

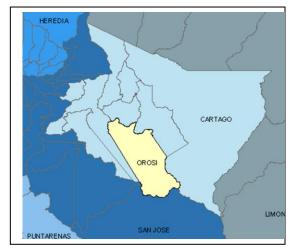
Los resultados de la simulación se presentan a manera de mapas de amenaza para diferentes condiciones de análisis. Se establecen comparaciones con los reportes existentes de zonas con problemas de inestabilidad para efectos de validación del modelo. Una vez calibrado y ajustado el modelo puede utilizarse para analizar zonas con características similares, para analizar otras situaciones de eventos detonantes o para realizar estudios específicos de riesgo considerando la infraestructura expuesta en las zonas de influencia de la amenaza.

3 Metodología de evaluación de la amenaza

Para la evaluación de la amenaza por deslizamiento en la zona seleccionada de estudio se siguió la metodología propuesta en el marco de la iniciativa CAPRA la cual se describe en detalle en el informe ERN-CAPRA-T1-3 (Modelos de Evaluación de Amenazas Naturales y Selección, ERN 2009), y en el sitio www.ecapra.org.

La metodología para la evaluación de la amenaza por deslizamiento en la zona de estudio incluyó los siguientes aspectos:

- (a) Evaluación de la amenaza sísmica: ésta se evalúa mediante un análisis probabilístico (PSHA Probabilistic Seismic Hazard Analysis) y mediante escenarios específicos determinísticos.
- (b) Levantamiento de información básica para el estudio lo cual incluye como mínimo el modelo de elevación digital, las propiedades geotécnicas de los suelos superficiales, las condiciones de humedad interna en los suelos en el momento del evento, la profundidad media de los estratos susceptibles a deslizarse.
- (c) Evaluación de la amenaza por deslizamiento siguiendo la siguientes metodologías de análisis:
 - Análisis mediante el método de Mora-Varhson
 - Análisis mediante hipótesis de falla translacional o plana
- (d) Las condiciones utilizadas en los análisis fueron las siguientes:
 - Humedad. Esta condición depende directamente de la saturación del suelo, para el caso se trabajan dos episodios extremos de saturación, completamente seco y completamente saturado.
 - Propiedades de los suelos. Es necesario definir las características geotécnicas del área de estudio con mapas de pesos unitarios, mapa de cohesiones del suelo en condiciones drenadas, mapa de ángulos de fricción en condiciones drenadas, espesores de los estratos de suelo potencialmente deslizables.
 - Propiedades de las rocas (litología): Dependiendo de los tipos de formaciones existentes en el área de estudio, se requiere el mapa de pesos unitario, el ángulo de fricción y la cohesión de la roca.
 - Casos de análisis. Se analizaron dos escenarios de agua, y un escenario sísmico.
- (e) Generación de los mapas de amenaza para las diferentes metodologías y situaciones de análisis y edición para visualización.



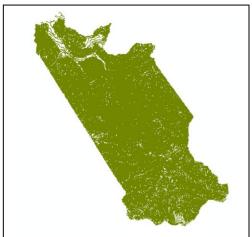
4 Información de referencia para los análisis

En este numeral se presenta la información utilizada para los análisis. Cabe mencionar que este caso de estudio se analiza como un modelo demostrativo de las capacidades de las metodologías adoptadas y las herramientas desarrolladas en el proyecto CAPRA. Empleando estas metodologías y herramientas es posible hacer análisis posteriores en cuanto se cuente con más y mejor información que la referenciada a continuación.

4.1 División administrativa

Los límites administrativos son tomados de la información disponible del Instituto Tecnológico de Costa Rica. La Figura 4-1 resume las características de esta información.

Tipo de Archivo	Shape
Nombre del Archivo	División Administrativa Costa Rica
Descripción	La división administrativa de Costa Rica conforma una de las capas de mayor utilidad, debido a que reduce las áreas de análisis en áreas de interés más especificas. Para este caso en especial, la ubicación y límites del distrito de Orosí.
Falencia	-
Procedencia	Atlas Costa Rica 2004. Instituto Tecnológico de Costa Rica


Figura 4-1 División administrativa del área de estudio

4.2 Modelo de elevación digital

El modelo de elevación digital se obtuvo a partir de la información de curvas de nivel de todo Costa Rica (Atlas Costa Rica 2004. Instituto Tecnológico de Costa Rica) el cual tiene una precisión altimétrica con curvas de nivel cada 20 m. La

Figura 4-2 resume las características de la información disponible.

Tipo de Archivo	Shape		
Nombre del Archivo	Curvas Orosí		
Descripción	Curvas de nivel del distrito de Orosí, Costa Rica. Levantadas cada 20m. Tomadas a partir del shape de curvas de nivel para todo Costa Rica.		
Falencia	Una precisión altimétrica de 20 m puede omitir taludes y condiciones de suelo que pueden llegar a ser críticas en el desarrollo de la amenaza por deslizamiento.		
Procedencia	Atlas Costa Rica 2004. Instituto Tecnológico de Costa Rica		

Figura 4-2 Curvas de nivel del modelo digital de elevación disponible, con diferencias altimétricas de 20 m.

4.3 Geología

La geología básica de la zona se obtiene a partir del mapa de geología general para Costa Rica (Atlas Costa Rica 2004. Instituto Tecnológico de Costa Rica). La Figura 4-3 resume las características de esta información.

Tipo de Archivo	Shape
Nombre del Archivo	Geología Orosí
Descripción	Geología general del distrito de Orosí. La base de datos del shape incluye datos referentes a la nomenclatura, el sistema al cual pertenece, la serie, la formación, su litología y una descripción general de la roca
Falencia	Es una caracterización regional de la geología, por lo tanto existe una incertidumbre en la distribución exacta de estas rocas, niveles de meteorización, diaclasamientos y discontinuidades, entre otros.
Procedencia	Atlas Costa Rica 2004. Instituto Tecnológico de Costa Rica

Figura 4-3 Geología del distrito

Para la selección de los parámetros geomecánicos de las rocas, se requiere conocer la litología y la formación a la que pertenecen, con ello se puede conocer teóricamente algunas propiedades. Para el ángulo de fricción de la roca existe literatura especializada que indican valores comunes para esta propiedad, en la Tabla 4-1 se presenta el compendio de información utilizado para dicho fin.

Tabla 4-1. Valores típicos de ángulos de fricción para varios tipos de roca. (Fuente: Jaime Suarez Días. Deslizamientos. Capitulo 9 Geología)

Clase de Roca	Rango de ángulo de fricción (Grados)	Tipos de Roca
Fricción Baja	20 a 27	Esquistos; Rocas con altocontenido de Mica, Lutitas y Margas.
Fricción Mediana	27 a 34	Arenisca, Limolita, Neiss, Pizarra.
Fricción Alta	34 a 40	Basalto, Granito, Caliza, Conglomerado.

Para el caso del peso específico de la roca, se sigue un procedimiento similar, tomando valores teóricos de referencia como los que se muestran en la Tabla 4-2.

Tabla 4-2 Valores típicos de ángulos de fricción para varios tipos de roca. (Fuente: EIA y EIS Proyecto de Explotación de Cantera GNL2 Cañete – Perú)

Tipo de roca		Litología	Peso Específico (t/m3)	Tamaño granos (mm)	Factor de Esponjamiento (%)	Resistencia a compresión (Mpa)
		Granodiorita				50-250
		Granito	2,7	0,1 - 2	1,60	200 - 350
		Monzonita				
Ígneas	Intrusiva	Diorita				
igneas		Tonalita	2,85 - 3,2	2	1,60	260 - 350
		Adamelita				50-250
		Gabro				
	Extrusiva	Andesita	2,7	0,1	1,60	300 - 400
		Conglomerado	2,6	2	1,50	140
		Arenisca	2,5	0,1 - 1	1,50	160 - 255
Sedimenta	rias	Lutita	2,7	< 0.004	1,35	70
		Coquina				
		Diatomita				
Metamórficas		Gneis	2,7	2	1,50	140 - 300
		Esquisto	2,7	0,1 - 1	1,60	60 - 400

La selección de la cohesión para cada tipo de roca se realizo con base al ángulo de fricción asignado, con base en la clasificación geomecánica según el sistema de clasificación Bieniawski (sistema RMR desarrollado por Z.T. Bieniawski. 1972-1973).

Tabla 4-3. Clasificación geomecánica de Bieniawski.

(Fuente: Bieniawski, Z.T. Engineering Rock Mass Classifications, John Wiley & Sons, Inc., 1989)

Clase	I	II	III	IV	V
Calidad	Muy Buena	Buena	Mediana	Mala	Muy Mala
RMR	81-100	61-80	41-60	21-40	0-20
Cohesión	> 0.4Mpa	0.3 - 0.4 Mpa	0.2 - 0.3 Mpa	0.1 – 0.2 Mpa	< 0.1 Mpa
Angulo de rozamiento	> 45°	35º - 45º	25º - 35º	15º - 25º	< 150

Para los casos en que no se cuenta con información referente a la roca, se recurrió a técnicas indirectas. Aprovechando las características de las formaciones, es posible identificar mineralogías más detalladas y tipos de granos que conforman dichas formaciones, para ello se correlacionaron rocas con ayuda de métodos como por ejemplo el triangulo de Streckeisen para rocas ígneas, que identifica la roca dependiendo de la cantidad de minerales que contiene, dando una idea de la resistencia y el tipo de roca a que pertenece.

4.4 Información de suelos

En lo que se refiere a zonificación geotécnica, se cuenta con un mapa edafológico y de usos del suelo (Atlas Costa Rica 2004. Instituto Tecnológico de Costa Rica) el cual incluye el nombre del suelo, su tipo, el área que abarca, las características de su orden, el grupo al que pertenece, el elemento formador y las características de la pendiente del terreno que ocupa. En general, esta información de suelos es insuficiente para realizar un análisis confiable. Sin embargo considerando que es la única información disponible, es empleada en este estudio para realizar estimativos de las propiedades físicas y mecánicas de los suelos de la zona con base en referencias a suelos con características descriptivas similares.

Tipo de Archivo	Shape		
Nombre del Archivo	Suelos Orosí		
Descripción	Ubicación espacial de los suelos del distrito de Orosí, dicho mapa cuenta con una base de datos que incluye el nombre del suelo, el tipo, el área que abarca, las características de su orden, el gran grupo al que pertenece, el elemento formador y las características de la pendiente del terreno que ocupa el suelo. El mapa de suelos de Orosí, es tomado a partir del mapa general de suelos para Costa Rica.		
Falencia	No se cuenta con una estratigrafía de precisión de los suelos existentes en el país, por ende los espesores de suelo deben ser inferidos, igualmente sus propiedades geomecánicas.		
Procedencia	Atlas Costa Rica 2004. Instituto Tecnológico de Costa Rica		

Figura 4-4 Mapa edafológico del distrito

La selección de los datos geotécnicos como cohesión, ángulo de fricción, peso unitario, espesor del estrato y desplazamientos permisibles requieren de estudios detallados del terreno, sin embargo de modo demostrativo, las propiedades se infieren teóricamente. Como información inicial se cuenta con las formaciones y las texturas correspondientes al área de estudio, siendo posible asignar de una manera muy general una categorización de los suelos en gravas, arenas, limos o arcillas. Es posible entonces referirse de nuevo a la literatura especializada para asignar valores teóricos de las propiedades geotécnicas de los suelos. En la Tabla 4-4 se presenta alguna de esta información de referencia para la asignación de los valores del ángulo de fricción. Debido a la variabilidad de los suelos y como son afectados por los cambios de humedad, tectonismo, etc., y sin una prospección pertinente, el valor de la cohesión resulta muy difícil de establecer, por lo tanto se tomo un valor homogéneo de 1 ton/m² para toda el área de estudio, un valor conservador, con una influencia moderada en los análisis. Para el caso de la selección del peso unitario del suelo se recurrió a lo establecido por autores como Terzagui, Peck, Garcia Valcarce, entre otros. En la Tabla 4-5 se muestra una de las referencias usadas para la selección de este parámetro.

Tabla 4-4. Valores representativos para el ángulo de fricción interna

(Fuente: Joseph E. Bowles, RE., S.E. Fundation analysis and desing. Fifth edition. Pag 108)

Type of test*						
	Unconsolidated- undrained,					
Soil	U	CU	CD			
Gravel						
Medium size	40-55°		40-55°			
Sandy	35-50°		35-50°			
Sand						
Loose dry	28-34°					
Loose saturated	28-34°					
Dense dry	35-46°		43-50°			
Dense saturated	1-2° less than		43-50°			
dense dry						
Silt or silty sand						
Loose	20-22°		27-30°			
Dense	25-30°		30-35°			
Clay	0° if saturated	3-20°	20-42°			

Tabla 4-5. Relación de vacios, contenido de humedad y peso unitario seco para algunos suelos típicos en estado natural

(Fuente: Braja M. Das. Principal of geotechnical engineering. Fifth edition. pag 53)

		Natural moisture	Dry unit weight, gd	
Type of soil	Void ratio, e	content in a saturated state (%)	lb/ft³	kN/m³
Loose uniform sand	0.8	30	92	14.5
Dense uniform sand	0.45	16	115	18
Loose angular-grained silty sand	0.65	25	102	16
Dense angular-grained silty sand	0.4	15	121	19
Stiff clay	0.6	21	108	17
Soft clay	0.9-1.4	30-50	73-93	11.5-14.5
Loess	0.9	25	86	13.5
Soft organic clay	2.5-3.2	90-120	38-51	6 -8
Glacial till	0.3	10	134	21

Los espesores de los estratos potencialmente deslizables se asignaron dependiendo del tipo de suelo escogido y con base en su ubicación espacial, pendiente topográfica y los regímenes de lluvias de las zonas. A las zonas de alta montaña con problemas de erosión y lluvias fuertes, se les asignan espesores bajos, a las zonas de depresión de acumulación de sedimentos o zonas de mesetas se asignan espesores altos, y a zonas con condiciones intermedias a las anteriormente mencionadas se asigna un valor intermedio de espesor. Se establecieron en total tres espesores característicos, 1, 3 y 5 m.

Los valores de las propiedades geomecánicas de los suelos y las rocas para el área de análisis inferidos mediante el procedimiento explicado anteriormente se presenta en la tabla 4-7, tomando como referencia la zonificación geológica.

Tabla 4-6.

Datos geomecánicos inferidos para el análisis de amenaza por deslizamiento.

NOMENCLATURA	Espesor	CSuelo	CRoca	GamSuelo	GamRoca	PhiSuelo	PhiRoca
N(2-1)-3c1	1.0	1.0	35.0	1.5	2.7	30.0	40.0
N2-c2	1.0	1.0	35.0	1.7	2.6	25.0	40.0
P3-N(2-1)mt	5.0	1.0	30.0	2.0	2.5	25.0	35.0

5 Mapas de amenaza por deslizamiento

Con base en la información presentada, se realiza el cálculo de la amenaza por deslizamientos empleando el sistema ERN-Deslizamiento (ERN 2009). Los resultados del análisis se representan mediante índices de inestabilidad en forma de mapas de amenaza por deslizamiento. Para el análisis se usaron los modelos de Mora-Vahrson y Falla Traslacional, para ilustrar el uso del programa. Los casos de análisis se relacionan en la Tabla 5-1.

Tabla 5-1 Mapas de Amenaza por deslizamiento generados para la zona de estudio.

Área de Cálculo	Tipo de análisis	Escenarios de agua*	Escenarios de sismo **	N° de escenarios del AME de deslizamiento.	
Distrito de Orosí	Mora Vahrson	2	1	2	
	Falla Plana	2	0	2	

^{*} Los escenarios de agua analizados son: situación completamente seca y situación completamente saturada. ** Los análisis con sismo se llevaron a cabo con un escenario similar al sismo de Chinchona, ocurrido el 8 de enero de 2009. El escenario empleado es un sismo de magnitud 6.3, ocurriendo 35 km al norte de San José.

Los índices de inestabilidad arrojados por las dos metodologías mencionadas se explican a continuación:

- Escala método Mora – Vahrson: la clasificación de la amenaza potencialmente deslizable por este método se divide en varias clases que se describen en la siguiente escala de colores, que va desde insignificante hasta muy alta.

I	II	III	IV	V	VI
Insignificante	Bajo	Moderado	Medio	Alto	Muy Alto
<6	7-32	33-162	163-512	513-1250	>1250

- Escala método de falla traslacional: la escala gráfica de estos mapas, representa el factor de inseguridad (FI) calculados, de manera que va desde cero (0) en verde, sin amenaza aparente, incrementándose progresivamente dependiendo del nivel de inestabilidad hasta tornarse completamente rojo, para valores de FI de 2.0 o más correspondientes en este caso a factores de seguridad inferiores a 0.5.

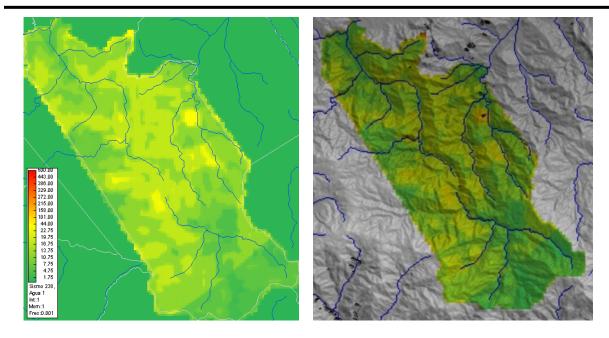


Figura 5-1 Mapa de amenaza por deslizamiento para el distrito de Orosí. Estado de suelo seco con sismo. Análisis método Mora Vahrson.

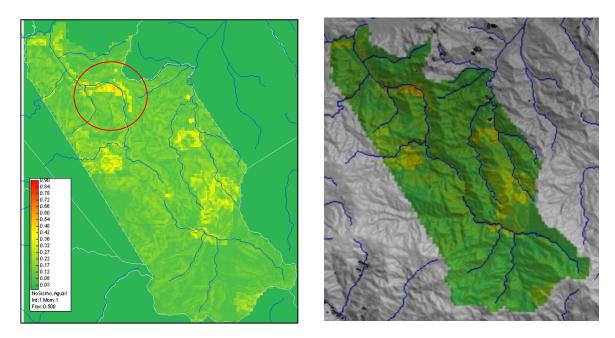


Figura 5-2 Mapa de amenaza por deslizamiento para el distrito de Orosí. Estado de suelo seco sin sismo. Análisis método de falla traslacional.

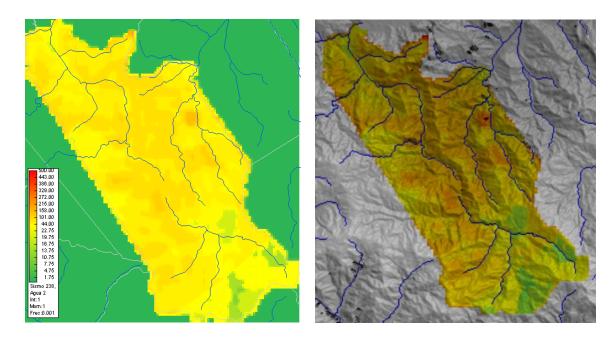


Figura 5-3 Mapa de amenaza por deslizamiento para el distrito de Orosí. Estado de suelo saturado con sismo. Análisis método Mora Vahrson.

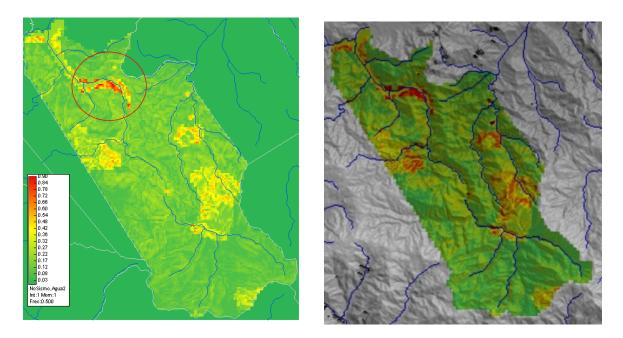


Figura 5-4 Mapa de amenaza por deslizamiento para el distrito de Orosí. Estado de suelo saturado sin sismo. Análisis método de falla traslacional.

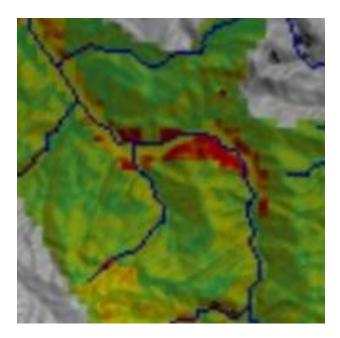


Figura 5-5 Ampliación de la zona de estudio con mayor amenaza por deslizamiento. Estado de suelo saturado. Análisis método Falla traslacional

Si se comparan los mapas de amenaza generados por el programa ERN-Deslizamientos, empleando las metodologías Mora-Vahrson y Falla Traslacional con el mapa general de evaluación de amenaza por deslizamientos en Orosí (ver Figura 1-4), se aprecia como el mapa de amenaza sectoriza y enfatiza los lugares con predisposiciones y susceptibilidades a la ocurrencia de un deslizamiento, mostrando que la zonificación de la amenaza es un recurso indispensable en el plan de manejo territorial tanto a nivel nacional como a niveles regionales.

La identificación realizada de zonas potencialmente deslizables en la región, debe ser una actividad periódica que permita identificar adecuadamente los niveles de riesgo de las poblaciones y áreas vulnerables.

6 Conclusiones

Los análisis realizados permiten obtener las siguientes conclusiones:

- (a) Los mapas de amenaza por deslizamiento que arroja la metodología Mora- Vahrson sectorizan de manera más homogénea las zonas potencialmente deslizables, según las condiciones intrínsecas de los materiales y los factores detonantes que varían estas condiciones. En la comparación de los dos mapas de amenaza realizados por la metodología Mora Vahrson es clara la incidencia que presenta la saturación del suelo para otras condiciones idénticas. Esto se debe a que la metodología tiene en cuenta la gran susceptibilidad de la litología a la acción del agua.
- (b) Ante el total desconocimiento de los niveles freáticos para las condiciones de análisis, factor que puede ser determinante en la valoración del factor o índice de inseguridad, es preciso seleccionar dos escenarios extremos por lo cual se toma un escenario completamente saturado y otro completamente seco.
- (c) El mapa correspondiente a estado seco y con sismo permite identificar como zonas de mayor afectación aquellas con presencia de asentamientos humanos.
- (d) Los mapas de amenaza por deslizamiento generados empleando la metodología de falla traslacional, muestran un mayor detalle de las zonas que pueden presentar afectación por deslizamiento. Esto debido a que el análisis por falla plana se realiza con base en información más detallada, lográndose en general una mejor resolución en los resultados finales.
- (e) La metodología por falla plana puntualiza en mayor grado las zonas inestables en comparación con la metodología Mora Vahrson. Los mapas generados al emplear las dos metodologías son por lo tanto complementarios y de gran ayuda en la toma de decisiones, particularmente de ordenamiento territorial.
- (f) Como era de esperarse, los sectores con mayor susceptibilidad, son las zonas ribereñas y los poblados, así como las vías construidas a media ladera y las zonas de altas pendientes.

Se debe tener en cuenta que dada la escala a la que se aplican los métodos y la información utilizada en los cálculos, estos análisis en ningún caso pretenden sustituir eventuales análisis detallados en zonas críticas. Esta metodología representa una herramienta de diagnostico muy útil que proporciona cierto grado de precisión, con el cual es posible la toma de decisiones y el manejo de grandes área afectadas.

7 Acciones Recomendadas

El análisis de amenaza de deslizamiento presentado para el caso del área de estudio debe verse como una evaluación inicial que permite la cuantificación y calificación de la amenaza en esta zona y zonas cercanas considerando la mejor información disponible en el momento.

A continuación se dejan explícitas las limitaciones en la información utilizada para los análisis, lo cual debe servir de base para los planes de trabajos y estudios futuros por parte del país y las regiones con miras a mejorar la calidad y confiabilidad de estos resultados preliminares presentados.

- (a) Información Sísmica: Se puede considerar de muy buena calidad y completa para efectos del presente análisis. Sería deseable la calibración del escenario con algunos registros acelerográficos existentes.
- (b) Modelo de elevación digital: con curvas de nivel cada 20 m el análisis es capaz de detectar deslizamiento con alturas del orden de 20 a 50 m como mínimo. Nada inferior a esto. Sería ideal contar con modelos de elevación digital con curvas de nivel cada 2 m, especialmente para las áreas críticas que se desee estudiar.
- (c) Información de suelos: siempre es escaza y difícil de conseguir. Se recomienda realizar una serie de estudios de suelos para caracterización de dichas propiedades en sectores críticos y utilizando como orientación básica los tipos de formaciones geológias y los tipos de suelo representativos en una región dada.
- (d) Información de niveles freáticos: es prácticamente inexistente. Sin embargo en la mayoría de los casos, la situación seca puede en general presentarse cuando hay largos periodos de sequia. La situación de total saturación, aunque posible, es difícil que llegue a presentarse, en especial a nivel regional.
- (e) Los resultados de los análisis de amenaza y su interpretación para la toma de decisiones debe realizarse de manera conjunta con las entidades y especialistas a cargo de la planificación del ordenamiento territorial y la atención de emergencias de la región.

Los resultados presentados anteriormente dependen directamente de la calidad y tipo de información suministrada al modelo. Entre más detallada y confiable sea la información, menor será la incertidumbre asociada a los resultados y por lo tanto el proceso de toma de decisiones podrá realizarse con mayor nivel de confianza.

El análisis de amenaza por deslizamientos presentado se convierte por lo tanto en un elemento fundamental en la gestión integral del riesgo de zonas montañosas. El proceso

exige la participación activa de entidades públicas, universidades, sector privado y de la comunidad en general relacionada con esta temática.

8 Referencias

Montgomery, David R. Dietrich, William E. A physically based model for the topographic control on shallow landsliding. APRIL 1994.

Guzzetti, Reichenbach, Ardizzone, Cardinali, Galli. Estimating the quality of landslide susceptibility models. 22 May 2006.

Mora, Sergio. Vahrson, Wilhelm-Gunter. Macrozonation methodology for landslide hazard determination. 1994.

Milesa, S.B. Hob, C.L.. Rigorous landslide hazard zonation using Newmark's method and stochastic ground motion simulation.

Stark, Colin P. Hovius, Niels. The characterization of landslide size distributions. 2001.

Taylor & Francis. The stability of slopes. 2nd edition. 1999.

Cheng, Y.M. and Lau, C.K. Slope Stability Analysis and Stabilization. New methods and insight. 2008

Duncan, J. Michael. Wright, Stephen G. Soil Strength and Slope Stability. 2005

Bardet, Jean-Pierre. Experimental soil Mechanics. 1997.

Bowles, Joseph. E. Foundation Analysis and Desing. Fifth edition.

Suarez, Jaime. Deslizamientos. Análisis Geotécnico.

Bieniawski, Z.T. "Engineering Rock Mass Classifications", John Wiley & Sons, Inc., 1989.

Das, Braja M. Principles of geotechnical Engineering. Fifth edition.

CATIE. Análisis de vulnerabilidad a deslizamientos en el distrito de Orosi, Costa Rica. 2004.

Federación internacional de sociedades de la cruz roja y la media luna roja. Artículo: Sistema de alerta temprana de deslizamientos de tierras en Costa Rica.2002.

www.nacion.com. Costa Rica, Miércoles 9 de enero de 2008.

www.cepis.org.pe. Acueducto Orosi: una experiencia regional sobre implementación de medidas de prevención y mitigación